Geometric Analysis with a view to data

Kevin R. Vixie

The Data Driven Modeling and Analysis (DDMA) Team &
Mathematical Modeling and Analysis (T-7)
Los Alamos National Laboratory

September 28, 2006

Geometric Analysis "Defined"

DDM

My (slightly) idiosyncratic view:

- Not simply analysis on manifolds, instead Geometric measure theory and variational analysis plus pieces of PDE, harmonic analysis, nonlinear functional analysis.
- My interests: geometry and analysis of sets, functions and measures in low and high dimensions. Includes things like the concentration of measure phenomenon.
- And: Do all this with a view to the illumination of very challenging data problems

In the rest of these slides I look at two examples of geometric analysis following form this viewpoint.

The L^1 TV functional:

$$F(u) \equiv \int |
abla u| dx + \lambda \int |u-d| dx$$

- ▶ Not strictly convex: F(u) is not strictly convex \Rightarrow we do not have uniqueness!
- ▶ **Homogeneity:** u is a minimizer for $d \rightarrow Cu$ is a minimizer for Cd
- **Existence:** Since TV(u) is lower semi-continuous in L^1 , F(u) is convex and coercive.

Consider $F(u) \equiv \int |\nabla u|^p dx$

$$F(u) = s^p(\Delta x) = \frac{(s\Delta x)^p}{(\Delta x)^{p-1}} = d^p(\Delta x)^{1-p}$$

$$(p>1) \ F(u) {\displaystyle \mathop { o } \limits_{\Delta x:
ightarrow 0}} \infty$$
 discontinuities are avoided: smooth u preferred,

$$(p<1) \ \ F(u) \overset{ o}{\underset{\Delta x o 0}{\longrightarrow}} 0$$
 discontinuities cost nothing: step u preferred,

$$(p=1) \,\, F(u) = d$$
 only jump magnitude "counts", no bias towards smooth or step.

Suppose u is a characteristic function of a set Ω ? Can we see what $\mathsf{TV}(u)$ will be?

Using the figure of an approximate characteristic function, we can convince ourselves that $\mathsf{TV}(u)$ is simply the length of the boundary of the set Ω .

Suppose Ω is really wild? The "argument" above depended on Ω being nice. What can we conclude about $\mathsf{TV}(\chi_{\Omega})$ in this case?

- ▶ There is a set $\partial^*\Omega$ called *reduced boundary* of Ω that coincides with the boundary that test functions can see
- ▶ $\mathsf{TV}(\chi_{\Omega})$ picks up the boundary that integration against smooth test functions "sees".
- ► (There are details we are sweeping under the rug!)

ррма

L^1 TV again:

$$F(u) \equiv \int |
abla u| dx + \lambda \int |u-d| dx$$

Chan and Esedoglu show that:

- $lackbox{ } d=\chi_{\Omega}\Rightarrow$ for some $\Sigma,\,u=\chi_{\Sigma}$ is a minimizer.
- More Precisely: If u is any minimizer of F(u) then for almost all $\mu \in [0,1]$, $\chi_{\{x:u>\mu\}}$ is also a minimizer of F(u), to get a minimizer that is a characteristic function.

$$u=\chi_{\Sigma}$$
 and $d=\chi_{\Omega}\Rightarrow F(\Sigma)\equiv F(\chi_{\Sigma})=\mathsf{Per}(\Sigma)+\lambda|\Sigma\Delta\Omega|$

$$lacksquare u = \chi_\Sigma
ightarrow \ \int |
abla u| dx$$
 = perimeter of Σ

$$ullet u=\chi_{\Sigma}, d=\chi_{\Omega} o \lambda \int |u-d| dx = \lambda \int |\chi_{\Sigma}-\chi_{\Omega}| dx = \lambda {\sf Area}(\Sigma igtriangleup \Omega)$$

If Ω = $B_{\frac{2}{\lambda}}$ then $u=\alpha\chi_{B_{\frac{2}{\lambda}}}$ is a minimizer for any $\alpha\in[0,1].$

▶ We can concoct Ω's whose solutions Σ(λ) have, as λ → ∞, an infinite number of non-uniqueness points ...

Theorem

If $B_r \subset \Omega$ where $r \geq \frac{2}{\lambda}$, then $B_r \subset \Sigma$.

- edges are perfectly preserved if they can be touched by $\frac{2}{\lambda}$ balls in and out
- ▶ boundary of Σ is in the envelope between inside and outside $\frac{2}{\lambda}$ balls

$$egin{array}{lll} E(\Sigma \cup B_r) & - & E(\Sigma) \ & = & (\mathsf{Per}(B_r) - \lambda |B_r|) + (\lambda |B_r \cap \Sigma| - \mathsf{Per}(B_r \cap \Sigma)) \ & = & \left(2\pi r - rac{2}{R}\pi r^2
ight) + \left(rac{2}{R}\pi
ho^2 - 2\pi
ho^*
ight) \ & = & 2\pi r (1 - rac{r}{R}) + 2\pi
ho (rac{
ho}{R} - rac{
ho^*}{
ho}) \end{array}$$

Denoising shapes

DDMA

Theorem

$$B_{\frac{2}{\lambda}} \subset \Omega \to \ B_{\frac{2}{\lambda} - \epsilon} \subset \Sigma$$

$$E(\Sigma \cup B_r) - E(\Sigma) \leq 2\pi r (1 - rac{r}{R}) + 2\pi
ho (rac{
ho}{R} - rac{
ho^*}{
ho}) + 2\lambda |B_r \setminus \Omega|$$

We use simpler means to arrive at some conclusions about minimizers of one functional in Allard's class:

- ▶ Results hold in \mathbb{R}^n : $\frac{2}{\lambda} \to \frac{n}{\lambda}$
- Allard gets a critical radius of $r = \frac{n-1}{\lambda}$, this is a local curvature. Our $r = \frac{n}{\lambda}$ is somehow global.
- ▶ We use the structure theorem for sets of finite perimeter, therefore n is unrestricted.
- ▶ Allard uses the more powerful regularity theory developed for minimal surface problems: his n < 7.

Idea: Use image geometry to generate robust measures.

Application: validation of simulation codes.

What is the distance between the following experiment and simulation?

Idea: generate a rigid transformation invariant signature by looking at signatures derived from the *Steiner symmetrizations* or *symmetric decreasing rearangements*.

- **Symmetric decreasing rearrangements:** for f in $L^p(\mathbb{R}^n)$, the *symmetric decreasing rearrangement* f^* is the $L^p(\mathbb{R}^n)$ function such that $\{f^* \geq y\}$ is a disk centered at the origin in \mathbb{R}^n such that $\mathcal{H}^n(\{f^* \geq y\}) = \mathcal{H}^n(\{f \geq y\})$. We will denote the mapping from f to f^* by \mathcal{R} .
- ▶ $||f||_p = ||f^*||_p$: Since L^p norms are integrals over areas of level sets.
- ▶ $||\nabla f||_p \ge ||\nabla f^*||_p$: used in applications to variational problems.
- $ightharpoonup \mathcal{R}$ is *not* continuous in $W^{1,p}$...

Easiest implementation: use the areas of the disks as a function of height of the disk (f^*) as a signature.

Now compare signatures between images.

Computing and using these area signatures

DDMA

- ► **Regularize:** run *mean curvature flow* a bit on the simulated images and the experimental images.
- ▶ Compute area signatures: compute areas of the level sets.
- ▶ 1-D Warping: use a simple warping method to compare the 1-D signatures.

The experimental and simulated images

DMA

The registration problem is in fact a very good test of quality of the metric – validated by expert judgement

